Part Number Hot Search : 
ADG3304 M1Z10 2N3003 TGA4953 24C04Y 3EZ16D5 7C1041 SRA22
Product Description
Full Text Search
 

To Download COMINGSOON Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 40v precision single supply rail-to-rail output low power operational amplifiers isl28108, isl28208, isl28408 the isl28108, isl28208 and is l28408 are single, dual and quad low power precision amplifiers optimized for single supply applications. these de vices feature a common mode input voltage range extending to 0.5v below the v- rail, a rail-to-rail differential input voltage range for use as a comparator, and rail-to-rail output voltage swing, which make them ideal for single supply applications where input operation at ground is important. added features include low offset voltage, and low temperature drift making them the ideal choice for applications requiring high dc accuracy. the output stage is capable of driving large capacitive loads from rail-to-rail for excellent adc driving performance. the devices can operate for single or dual supply from 3v (1.5v) to 40v (20v) and are fully characterized at 5v and 15v. the combination of precision, low power, and small footprint provide the user with outstanding value and flexibility relative to similar competitive parts. applications for these amplifiers include precision instrumentation, data acquis ition, precision power supply control, and industrial control. the isl28108 single is offered in 8 ld tdfn, msop and soic packages. the isl28208 dual amplifier is offered in 8 ld tdfn, msop, and soic packages. the isl28408 is offered in 14 ld soic package. all devices are offered in standard pin configurations and operate over the extended temperature range of -40c to +125c. features ? single or dual supply, rail-to-rail output and below ground (v-) input capability ? rail-to-rail input differential voltage range for comparator applications ? single supply range . . . . . . . . . . . . . . . . . . . . . . . . . . 3v to 40v ? low current consumption (v s = 5v). . . . . . . . . . . . . . . 165a ? low noise voltage. . . . . . . . . . . . . . . . . . . . . . . . . . 15.8nv/ hz ? low noise current. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80fa/ hz ? low input offset voltage (isl28108) . . . . . . . . . . . . . . 150v ? superb temperature drift - voltage offset tc . . . . . . . . . . . . . . . . . . . . . . 0.1v/c, typ ? low input bias current . . . . . . . . . . . . . . . . . . . . . . . . -13na typ ? operating temperature range. . . . . . . . . . . .-40c to +125c ? no phase reversal applications ? precision instruments ? medical instrumentation ? data acquisition ?power supply control ? industrial process control related literature ? an1658 , ?isl28208soiceval2z evaluation board user guide? figure 1. typical application circuit figure 2. input offset voltage vs input common mode voltage, v s = 15v in- in+ r f r ref + isl28108 +3v v- v+ r in - 10k ? r in + 10k ? - + 100k ? v ref 100k ? v out load r sense single-supply, low-side gain = 10 to 40v current sense amplifier v os (v) input common mode voltage (v) -500 -400 -300 -200 -100 0 100 200 300 400 500 13 13.5 14 14.5 15 -16 -15.5 -15 -14.5 -14 +25c +125c v s = 15v -40c caution: these devices are sensitive to electrostatic discharge; follow proper ic handling procedures. 1-888-intersil or 1-888-468-3774 | copyright intersil americas lcc 2011, 2013, 2014. all rights reserved intersil (and design) is a trademark owned by intersil corporation or one of its subsidiaries. all other trademarks mentioned are the property of their respective owners. march 4, 2014 fn6935.5
isl28108, isl28208, isl28408 2 fn6935.5 march 4, 2014 submit document feedback table of contents ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 pin configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 pin descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 electrical specifications, v s 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 electrical specifications, v s 5v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 typical performance curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 operating voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 input stage performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 output drive capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 output phase reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 unused channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 isl28108, isl28208, isl28408 spice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 characterization vs simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 about intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 package outline drawing, m8.15e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 package outline drawing, l8.3x3k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 package outline drawing, m8.118b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 package outline drawing, m14.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
isl28108, isl28208, isl28408 3 fn6935.5 march 4, 2014 submit document feedback ordering information part number (notes 1, 2, 3) part marking temp. range (c) package (pb-free) pkg. dwg. # isl28108fbz 28108 fbz -40 to +125 8 ld soic m8.15e isl28108frtz 108z -40 to +125 8 ld tdfn l8.3x3k coming soon isl28108fuz 8108z -40 to +125 8 ld msop m8.118b isl28208fbz 28208 fbz -40 to +125 8 ld soic m8.15e isl28208frtz 208f -40 to +125 8 ld tdfn l8.3x3k isl28208fuz 8208z -40 to +125 8 ld msop m8.118b isl28408fbz 28408 fbz -40 to +125 14 ld soic m14.15 isl28208soiceval2z evaluation board notes: 1. add ?-t*? suffix for tape and reel. please refer to tech brief tb347 for details on reel specifications. 2. these intersil pb-free plastic packaged products employ spec ial pb-free material sets, molding compounds/die attach materials , and 100% matte tin plate plus anneal (e3 termination finish , which is rohs compliant and compatible wi th both snpb and pb-free soldering opera tions). intersil pb-free products are msl classified at pb-fr ee peak reflow temperatures that meet or exceed the pb-free requirements of ipc/jed ec j std-020. 3. for moisture sensitivity level (msl), please see device information page for isl28108 , isl28208 , isl28408 . for more information on msl please see tech brief tb363 .
isl28108, isl28208, isl28408 4 fn6935.5 march 4, 2014 submit document feedback pin configurations isl28108 (8 ld tdfn) top view isl28108 (8 ld msop, soic) top view isl28208 (8 ld tdfn) top view isl28208 (8 ld msop, soic) top view isl28408 (14 ld soic) top view 2 3 4 1 7 6 5 8 nc -in +in v- nc v+ v out nc + - pad nc -in +in v- 1 2 3 4 8 7 6 5 nc v+ v out nc + - 2 3 4 1 7 6 5 8 v out _a -in_a +in_a v- v+ v out _b -in_b +in_b + - +- pad v out _a -in_a +in_a v- 1 2 3 4 8 7 6 5 v+ v out _b -in_b +in_b + - +- -+ - + -+ - + bc ad v out _ a -in _ a +in _ a v + 1 2 3 4 5 6 7 10 9 8 11 12 13 14 +in _ b -in _ b v out _ b v - +in _ c -in _ c v out _ c v out _ d -in _ d +in _ d vout_a vout_a -in_a -in_d +in_a +in_d v+ v- +in_b +in_c -in_b -in_c vout_b vout_c
isl28108, isl28208, isl28408 5 fn6935.5 march 4, 2014 submit document feedback pin descriptions isl28108 (8 ld soic, msop, tdfn) isl28208 (8 ld soic, msop, tdfn) isl28408 (14 ld soic) pin name equivalent circuit description 3 - - +in circuit 1 amplifier non-inverting input -33+in_a -55+in_b - - 10 +in_c - - 12 +in_d 4 4 11 v- circuit 3 negative power supply 2 - - -in circuit 1 amplifier inverting input -22-in_a -66-in_b --9-in_c --13-in_d 7 8 4 v+ circuit 3 positive power supply 6--v out circuit 2 amplifier output -11v out _a -77v out _b --8v out _c --14v out _d 1, 5, 8 - - nc - no internal connection pad pad - pad - thermal pad - tdfn package only. connect thermal pad to ground or most negative potential. circuit 2 circuit 1 v+ v- circuit 3 capacitively triggered esd clamp in- v+ v- in+ v+ v- out
isl28108, isl28208, isl28408 6 fn6935.5 march 4, 2014 submit document feedback absolute maximum ratings thermal information maximum supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42v maximum differential input voltage . . . . . . . 42v or v - - 0.5v to v + + 0.5v min/max input voltage . . . . . . . . . . . . . . . . . . 42v or v - - 0.5v to v + + 0.5v max/min input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20ma output short-circuit duration (1 output at a time) . . . . . . . . . . . indefinite esd tolerance (isl28208, isl28408) human body model (tested per jesd22-a114f) . . . . . . . . . . . . . . . . 6kv machine model (tested per jesd22-a115-c) . . . . . . . . . . . . . . . . . 400v charged device model (tested per jesd22-c110d) . . . . . . . . . . . . . 2kv esd tolerance (isl28108) human body model (tested per jesd22-a114f) . . . . . . . . . . . . . . 5.5kv machine model (tested per jesd22-a115-c) . . . . . . . . . . . . . . . . . 300v charged device model (tested per jesd22-c110d) . . . . . . . . . . . . . 2kv esd tolerance (isl28108 msop package only) human body model (tested per jesd22-a114f) . . . . . . . . . . . . . . . . 3kv machine model (tested per jesd22-a115-c) . . . . . . . . . . . . . . . . . 300v charged device model (tested per jesd22-c110d) . . . . . . . . . . . . . 2kv thermal resistance (typical) ja (c/w) jc (c/w) 8 ld soic package (208, notes 4, 7) . . . . . . . 120 55 8 ld soic package (108, notes 4, 7) . . . . . . . 120 60 8 ld tdfn package (208, notes 5, 6) . . . . . . 47 6 8 ld tdfn package (108, notes 5, 6) . . . . . . 45 3.5 8 ld msop package (208, notes 4, 7). . . . . . 150 50 8 ld msop package (108, notes 4, 7). . . . . . 165 57 14 ld soic package (408, notes 4, 7). . . . . . 71 37 storage temperature range . . . . . . . . . . . . . . . . . . . . . . -65c to +150c pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/ pbfree/pb-freereflow.asp operating conditions ambient operating temperature range . . . . . . . . . . . . . -40c to +125c maximum operating junction temperature . . . . . . . . . . . . . . . . . +150c supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3v (1.5v) to 40v (20v) caution: do not operate at or near the maximum ratings listed for extended periods of time. exposure to such conditions may adv ersely impact product reliability and result in failures not covered by warranty. notes: 4. ja is measured with the component mounted on a high effective thermal conductivity test board in free air. see tech brief tb379 for details. 5. ja is measured in free air with the component mounted on a high effective thermal conductivity test board with ?direct attach? fe atures. see tech brief tb379 . 6. for jc , the ?case temp? location is the center of the exposed metal pad on the package underside. 7. for jc , the ?case temp? location is taken at the package top center. important note: all parameters having min/max specifications are guaranteed. typical values are for information purposes only. u nless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: t j = t c = t a electrical specifications, v s 15 v cm = 0, v o = 0v, r l = open, t a = +25c, unless otherwise noted. boldface entries apply over the operating temperature range, -40c to +125c. temperature data established by characterization . parameter description conditions min (note 8) typ max (note 8) unit v os input offset voltage isl28208 isl28408 -230 25 230 v -330 330 v isl28108 soic, tdfn -150 10 150 v -270 270 v tcv os input offset voltage temperature coefficient isl28208 soic -40c to +125c 0.1 1.1 v/ c isl28208 msop -40c to +125c 0.2 1.5 v/ c isl28208 tdfn isl28408 -40c to +125c 0.2 1.4 v/ c isl28108 soic, tdfn -40c to +125c 0.2 1.2 v/ c v os input offset voltage match (isl28208 only) isl28208 soic, tdfn -300 5 300 v -400 400 v isl28208 msop -420 420 v i b input bias current -43 -13 na -63 na tci b input bias current temperature coefficient 0.07 na/ c
isl28108, isl28208, isl28408 7 fn6935.5 march 4, 2014 submit document feedback i os input offset current isl28208 -3 0 3 na -4 4 na isl28108 soic, tdfn isl28408 -4 0 4 na -5 5 na cmrr common-mode rejection ratio v cm = v - -0.5v to v + -1.8v 119 db v cm = v - -0.2v to v + -1.8v 123 db 102 db v cm = v - to v + -1.8v 105 123 db 102 115 db v cmir common mode input voltage range guaranteed by cmrr test v - - 0.5 v + - 1.8 v v - v + - 1.8 v psrr power supply rejection ratio v s = 3v to 40v, v cmir = valid input voltage 110 128 db 109 124 db a vol open-loop gain v o = -13v to +13v, r l = 10k ? to ground 117 126 db 100 db v ol output voltage low, v out to v - r l = 10k ? 52 85 mv 145 mv v oh output voltage high, v + to v out r l = 10k ? 70 110 mv 150 mv i s supply current/amplifier r l = open 185 250 a 270 350 a i sc+ output short circuit source current r l = 10 ? to v - 19 ma i sc- output short circuit sink current r l = 10 ? to v + 30 ma v supply supply voltage range guaranteed by psrr 3 40 v ac specifications gbwp gain bandwidth product a cl = 101, v o = 100mv p-p , r l = 2k ? 1.2 mhz e np-p noise voltage 0.1hz to 10hz; v s = + 18v 580 nvp-p e n noise voltage density f = 10hz; v s = + 18v 18 nv/ hz e n noise voltage density f = 100hz; v s = + 18v 16 nv/ hz e n noise voltage density f = 1khz; v s = + 18v 15.8 nv/ hz e n noise voltage density f = 10khz; v s = + 18v 15.8 nv/ hz i n noise current density f = 10khz; v s = + 18v 80 fa/ hz thd + n total harmonic distortion + noise 1khz, a v = 1, v o = 3.5v rms , r l =10k ? 0.00042 % transient response sr slew rate, v out 20% to 80% a v = 1, r l = 2k ? , v o = 10v p-p 0.45 v/s t r , t f , small signal rise time, v out 10% to 90% a v = 1, v out = 100mv p-p , r f = 0 ? , r l =2k ? to v cm 264 ns fall time, v out 90% to 10% a v = 1, v out = 100mv p-p , r f = 0 ? , r l = 2k ? to v cm 254 ns t s settling time to 0.01% 10v step; 10% to v out a v = -1, v out = 10v p-p , r g = r f =10k, r l =2k ? to v cm 27 s electrical specifications, v s 15 v cm = 0, v o = 0v, r l = open, t a = +25c, unless otherwise noted. boldface entries apply over the operating temperature range, -40c to +125c. temperature data established by characterization . (continued) parameter description conditions min (note 8) typ max (note 8) unit
isl28108, isl28208, isl28408 8 fn6935.5 march 4, 2014 submit document feedback electrical specifications, v s 5v v cm = 0, v o = 0v, t a = +25c, unless otherwise noted. boldface entries apply over the operating temperature range, -40c to +125c. temperature data established by characterization . parameter description conditions min (note 8) typ max (note 8) unit v os input offset voltage isl28208 isl28408 -230 25 230 v -330 330 v isl28108 soic, tdfn -150 10 150 v -270 270 v tcv os input offset voltage temperature coefficient isl28208 soic -40c to +125c 0.1 1.1 v/ c isl28208 msop -40c to +125c 0.2 1.5 v/ c isl28208 tdfn isl28408 -40c to +125c 0.2 1.4 v/ c isl28108 soic, tdfn -40c to +125c 0.2 1.2 v/ c v os input offset voltage match (isl28208 only) -300 3 300 v -400 400 v i b input bias current -43 -15 na -63 na tci b input bias current temperature coefficient -40c to +125c -0.067 na/ c i os input offset current isl28208 -3 0 3 na -4 4 na isl28108 soic, tdfn isl28408 -404na -5 5 na cmrr common-mode rejection ratio v cm = v - -0.5v to v + -1.8v 101 db v cm = v - -0.2v to v + -1.8v 123 db 89 db v cm = v - to v + -1.8v isl28108, isl28208 105 123 db 100 112 db v cm = v - to v + -1.8v isl28408 105 123 db 97 112 db v cmir common mode input voltage range guaranteed by cmrr test v - - 0.5 v + - 1.8 v v - v + - 1.8 v psrr power supply rejection ratio v s = 3v to 10v, v cmir = valid input voltage all except isl28208 msop 110 126 db 109 123 db isl28208 msop v s = 3v to 10v, v cmir = valid input voltage 109 126 db 107 123 db a vol open-loop gain v o = -3v to +3v, r l = 10k ? to ground 117 124 db 99 db v ol output voltage low, v out to v - r l = 10k ? 23 38 mv 48 mv v oh output voltage high, v + to v out r l = 10k ? 30 65 mv 70 mv
isl28108, isl28208, isl28408 9 fn6935.5 march 4, 2014 submit document feedback i s supply current/amplifier r l = open 165 250 a 240 350 a i sc+ output short circuit source current r l = 10 ? to v - 14 ma i sc- output short circuit sink current r l = 10 ? to v + 22 ma ac specifications gbw gain bandwidth product a cl = 101, v o = 100mv p-p , r l = 2k ? 1.2 mhz e np-p noise voltage 0.1hz to 10hz 600 nv p-p e n noise voltage density f = 10hz 18 nv/ hz e n noise voltage density f = 100hz 16 nv/ hz e n noise voltage density f = 1khz 15.8 nv/ hz e n noise voltage density f = 10khz 15.8 nv/ hz i n noise current density f = 10khz 90 fa/ hz transient response sr slew rate, v out 20% to 80% a v = 1, r l = 2k ? , v o = 4v p-p 0.4 v/s t r , t f , small signal rise time, v out 10% to 90% a v = 1, v out = 100mv p-p , r f = 0 ? , r l =2k ? to v cm 264 ns fall time, v out 90% to 10% a v = 1, v out = 100mv p-p , r f = 0 ? , r l = 2k ? to v cm 254 ns t s settling time to 0.01% 4v step; 10% to v out a v = -1, v out = 4v p-p , r g = r f =10k, r l =2k ? to v cm 14.4 s note: 8. compliance to data sheet limits is assured by one or more methods: production test, characterization and/or design. electrical specifications, v s 5v v cm = 0, v o = 0v, t a = +25c, unless otherwise noted. boldface entries apply over the operating temperature range, -40c to +125c. temperature data established by characterization . (continued) parameter description conditions min (note 8) typ max (note 8) unit
isl28108, isl28208, isl28408 10 fn6935.5 march 4, 2014 submit document feedback typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. figure 3. isl28408 soic input offset voltage distribution, v s = 15v figure 4. isl28408 soic input offset voltage distribution, v s = 5v figure 5. isl28208 input offset voltage distribution, v s =15v figure 6. isl28208 input offset voltage distribution, v s = 5v figure 7. isl28108 soic input offset voltage distribution, v s = 15v figure 8. isl28108 soic input offset voltage distribution, v s = 5v v os (v) n u m b e r o f a m p li fi e r s 0 50 100 150 200 250 300 350 400 - 1 6 0 - 1 4 0 - 1 2 0 - 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 v s = 15v v os (v) n u m b e r o f a m p li fi e r s 0 50 100 150 200 250 300 350 400 - 1 6 0 - 1 4 0 - 1 2 0 - 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 v s = 5v v os (v) n u m b e r o f a m p li fi e r s 0 50 100 150 200 250 300 v s = 15v - 1 1 0 - 1 0 0 - 9 0 - 8 0 - 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 v s = 5v v os (v) n u m b e r o f a m p li fi e r s 0 50 100 150 200 250 300 - 1 1 0 - 1 0 0 - 9 0 - 8 0 - 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 v os (v) n u m b e r o f a m p li fi e r s 0 50 100 150 200 v s = 15v - 1 1 0 - 1 0 0 - 9 0 - 8 0 - 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 v os (v) n u m b e r o f a m p li fi e r s v s = 5v 0 50 100 150 200 - 1 1 0 - 1 0 0 - 9 0 - 8 0 - 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
isl28108, isl28208, isl28408 11 fn6935.5 march 4, 2014 submit document feedback figure 9. isl28108 tdfn input offset voltage distribution, v s = 15v figure 10. isl28108 tdfn input offset voltage distribution, v s = 5v figure 11. isl28408 soic tcv os vs number of amplifiers, v s =15v figure 12. isl28408 soic tcv os vs number of amplifiers, v s = 5v figure 13. isl28208 soic tcv os vs number of amplifiers, v s =15v figure 14. isl28208 soic tcv os vs number of amplifiers, v s = 5v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) v os (v) n u m b e r o f a m p li fi e r s 0 5 10 15 20 25 v s = 15v - 1 1 0 - 1 0 0 - 9 0 - 8 0 - 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 v os (v) n u m b e r o f a m p li fi e r s 0 5 10 15 20 25 v s = 5v - 1 1 0 - 1 0 0 - 9 0 - 8 0 - 7 0 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 n u m b e r o f a m p li fi e r s tcv os (v/c) v s = 15v - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 0 5 10 15 20 25 n u m b e r o f a m p l i f i e r s tcv os (v/c) - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 0 5 10 15 20 25 30 v s = 5v n u m b e r o f a m p l i f i e r s tcv os (v/c) 0 2 4 6 8 10 12 14 16 18 20 22 24 v s = 15v - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 n u m b e r o f a m p l i f i e r s tcv os (v/c) 0 2 4 6 8 10 12 14 16 18 20 22 24 - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 v s = 5v
isl28108, isl28208, isl28408 12 fn6935.5 march 4, 2014 submit document feedback figure 15. isl28208 tdfn and msop tcv os vs number of amplifiers, v s = 15v figure 16. isl28208 tdfn and msop tcv os vs number of amplifiers, v s = 5v figure 17. isl28108 soic tcv os vs number of amplifiers, v s =15v figure 18. isl28108 soic tcv os vs number of amplifiers, v s = 5v figure 19. isl28108 tdfn tcv os vs number of amplifiers, v s =15v figure 20. isl28108 tdfn tcv os vs number of amplifiers, v s = 5v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) n u m b e r o f a m p l i f i e r s tcv os (v/c) 0 2 4 6 8 10 12 14 16 18 20 22 24 - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 v s = 15v n u m b e r o f a m p l i f i e r s tcv os (v/c) 0 2 4 6 8 10 12 14 16 18 20 22 24 - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 v s = 5v n u m b e r o f a m p l i f i e r s 0 5 10 15 20 25 30 35 - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 v s = 15v tcv os (v/c) n u m b e r o f a m p l i f i e r s - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 tcv os (v/c) 0 5 10 15 20 25 30 v s = 5v n u m b e r o f a m p l i f i e r s - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 tcv os (v/c) 0 2 4 6 8 10 12 14 v s = 15v n u m b e r o f a m p l i f i e r s - 1 . 1 - 1 . 0 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 tcv os (v/c) 0 2 4 6 8 10 12 14 v s = 5v
isl28108, isl28208, isl28408 13 fn6935.5 march 4, 2014 submit document feedback figure 21. v os vs temperature figure 22. i bias vs temperature vs supply figure 23. input offset voltage vs input common mode voltage, v s = 15v figure 24. input offset voltage vs input common mode voltage, v s = 5v figure 25. cmrr vs temperature, v s = 15v figure 26. cmrr vs temperature, v s = 5v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) temperature (c) -40 -20 0 20 40 60 80 100 120 v o s ( v ) -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 v s = 5v v s = 2.25v v s = 20v v s = 15v temperature (c) -40 -20 0 20 40 60 80 100 120 i bias (na) -25 -20 -15 -10 -5 0 v s = 5v v s = 15v v s = 21v v s = 1.5v v s = 2.25v v os (v) input common mode voltage (v) -500 -400 -300 -200 -100 0 100 200 300 400 500 13 13.5 14 14.5 15 -16 -15.5 -15 -14.5 -14 +25c +125c v s = 15v -40c v os (v) input common mode voltage (v) -500 -400 -300 -200 -100 0 100 200 300 400 500 33.5 4 4.5 5 -6 -5.5 -5 -4.5 -4 +25c +125c v s = 5v -40c temperature (c) -40 -20 0 20 40 60 80 100 120 cmrr (db) 100 105 110 115 120 125 130 v s = 15v channel-a channel-b temperature (c) -40 -20 0 20 40 60 80 100 120 cmrr (db) 100 105 110 115 120 125 130 v s = 5v channel-a channel-b
isl28108, isl28208, isl28408 14 fn6935.5 march 4, 2014 submit document feedback figure 27. cmrr vs frequency, v s = 15v figure 28. psrr vs frequency, v s = 5v and 15v figure 29. psrr (dc) vs temperature, v s = 15v figure 30. psrr (dc) vs temperature, v s = 5v figure 31. output overhead volt age high vs load current, v s = 5v and 15v figure 32. output overhead voltage low vs load current, v s = 5v and 15v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) c m r r ( d b ) frequency (hz) 1m 1 10 100 1k 10k 100k 1m 10m 100m 1g 0.1 0.01 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 v s = 15v simulation 10 100 1k 10k 100k 1m 10m p s r r ( d b ) frequency (hz) 0 10 20 30 40 50 60 70 80 90 100 110 120 c l = 4pf v source = 1v p-p r l = 10k a v = 1 v s = 5v, 15v psrr+ psrr- temperature (c) p s r r ( d b ) 120 125 130 135 140 -40 -20 0 20 40 60 80 100 120 v s = 15v temperature (c) p s r r ( d b ) 120 125 130 135 140 -40 -20 0 20 40 60 80 100 120 v s = 5v v + - v o h ( v ) load current (ma) 0.001 0.01 0.1 1 0.001 0.01 0.1 1 10 v s = 5v and 15v -40c +25c 125c v o l - v - ( v ) load current (ma) 0.001 0.01 0.1 1 0.001 0.01 0.1 1 10 -40c +25c 125c v s = 5v and 15v
isl28108, isl28208, isl28408 15 fn6935.5 march 4, 2014 submit document feedback figure 33. isl28208 output voltage swing vs load current v s = 15v figure 34. isl28208 output voltage swing vs load current v s = 5v figure 35. v out high and low vs temperature, v s =15v,r l =10k figure 36. v out high and low vs temperature, v s = 5v, r l =10k figure 37. short circuit current vs temperature, v s = 15v figure 38. short circuit current vs temperature, v s = 5v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) -15 -14 -13 -12 -11 -10 v o h ( v ) v o l (v ) i-force (ma) 11 12 13 14 15 10 v s = 15v a v = 2 v in = 7.5vdc r f = r g = 100k 0 2 4 6 8 10 12 14 16 18 20 22 24 -40c 0c +25c +75c +125c 1 2 3 4 5 -5 -4 -3 -2 -1 v o h ( v ) v o l ( v ) i-force (ma) v s = 5v a v = 2 v in = 2.5vdc r f = r g = 100k 0 2 4 6 8 1012141618202224 -40c 0c +25c +125c +75c temperature (c) -40 -20 0 20 40 60 80 100 120 v o h a n d v o l ( m v ) 0 10 20 30 40 50 60 70 80 90 100 v s = 15v r l = 10k v oh (v + to v out ) v ol (v out to v - ) temperature (c) -40 -20 0 20 40 60 80 100 120 v o h a n d v o l ( m v ) 0 10 20 30 40 50 60 70 80 90 100 v s = 5v r l = 10k v oh (v + to v out ) v ol (v out to v - ) i s c ( m a ) 0 5 10 15 20 25 30 35 40 45 50 temperature (c) -40 -20 0 20 40 60 80 100 120 v s = 15v r l = 10k i sc -sink i sc -source i s c ( m a ) 0 5 10 15 20 25 30 35 40 45 50 v s = 5v r l = 10k temperature (c) -40 -20 0 20 40 60 80 100 120 i sc -sink i sc -source
isl28108, isl28208, isl28408 16 fn6935.5 march 4, 2014 submit document feedback figure 39. max output voltage vs frequency figure 40. no phase reversal figure 41. av ol vs temperature figure 42. open-loo p gain, phase vs frequency, v s = 15v figure 43. supply current vs supply voltage fig ure 44. frequency response vs closed loop gain typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1k 10k 100k 1m v o u t ( v p - p ) frequency (hz) v s = 15v a v = 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 i n p u t a n d o u t p u t ( v ) time (ms) 01020 2 4 6 8 12141618 v s = 5v v in = 5.9v input output -60 -40 -20 0 20 40 60 80 100 120 140 160 temperature (c) 100 110 120 130 140 a v o l ( d b ) v s = 15v v s = 5v -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 200 1 10 100 1k 10k 100k 1m 10m 100m 1g g a i n ( d b ) , p h a s e ( ) frequency (hz) 0.1 v s = 15v r l = 1m ? simulation gain phase i s u p p l y p e r a m p l i f i e r ( a ) v supply (v) 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 0 2 4 6 8 1012141618202224262830323436384042 -10 0 10 20 30 40 50 60 70 1k 10k 100k 1m 10m g a i n ( d b ) frequency (hz) 100 a cl = 1 a cl = 10 a cl = 1001 v s = 5v, 15v c l = 4pf v out = 100mv p-p r l = 2k a cl = 101 r f = 0, r g = r f = 10k ? , r g = 10 ? r f = 10k ? , r g = 100 ? r f = 10k ? , r g = 1.1k ?
isl28108, isl28208, isl28408 17 fn6935.5 march 4, 2014 submit document feedback figure 45. gain vs frequency vs r l , v s = 15v figure 46. gain vs frequency vs r l , v s = 5v figure 47. gain vs frequency vs output voltage f igure 48. gain vs frequency vs supply voltage figure 49. output impedance vs frequency, v s = 15v figure 50. output impedance vs frequency, v s = 5v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) frequency (hz) normalized gain (db) 100k 1m 10m 10k 1k -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 r l = 100 r l = 49.9 r l = 499 v s = 15v a v = +1 v out = 100mv p-p c l = 4pf 100 r l = open, 100k, 10k r l = 1k frequency (hz) normalized gain (db) 100k 1m 10m 10k 1k -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 100 v s = 5v a v = +1 v out = 100mv p-p c l = 4pf r l = 100 r l = 49.9 r l = 499 r l = open, 100k, 10k r l = 1k frequency (hz) normalized gain (db) 100k 1m 10m 10k 1k - -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 100 v s = 5v a v = +1 r l = inf c l = 4pf v out = 50mv p-p v out = 10mv p-p v out = 100mv p-p v out = 500mv p-p v out = 1v p-p normalized gain (db) frequency (hz) -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 100 1k 10k 100k 1m 10m c l = 4pf r l = 10k a v = +1 v out = 100mv p-p v s = 15v v s = 5v v s = 20v v s = 2.5v 0.01 0.10 1 10 100 10 100 1k 10k 100k 1m 10m z ou t ( ? ) frequency (hz) 1 v s = 15v g = 1 g = 10 g = 100 0.01 0.10 1 10 100 10 100 1k 10k 100k 1m 10m z ou t ( ? ) frequency (hz) 1 v s = 5v g = 100 g = 10 g = 1
isl28108, isl28208, isl28408 18 fn6935.5 march 4, 2014 submit document feedback figure 51. input noise voltage (en) and current (in) vs frequency, v s = 18v figure 52. input noise voltage (en) and current (in) vs frequency, v s = 5v figure 53. input noise voltage 0.1hz to 10hz, v s = 18v figure 54. input noise voltage 0.1hz to 10hz, v s = 5v figure 55. isl28208 channel se paration vs frequency, v s = 5v, 15v figure 56. positive output overload response time, v s =15v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) 0.1 1 10 100 1k 10k 100k i n p u t n o i s e v o l t a g e ( n v / h z ) frequency (hz) i n p u t n o i s e c u r r e n t ( p a / h z ) 0.01 0.1 1 10 100 0.01 0.1 1 10 100 v s = 18v input noise voltage input noise current 0.1 1 10 100 1k 10k 100k i n p u t n o i s e v o l t a g e ( n v / h z ) frequency (hz) i n p u t n o i s e c u r r e n t ( p a / h z ) 0.01 0.1 1 10 100 v s = 5v 0.01 0.1 1 10 100 input noise voltage input noise current i n p u t n o i s e v o lta g e ( nv ) 012345678910 time (s) -1000 -800 -600 -400 -200 0 200 400 600 800 1000 v s = 18v a v = 10k i n p u t n o i s e v o lta g e ( nv ) 012345678910 time (s) -1000 -800 -600 -400 -200 0 200 400 600 800 1000 v s = 5v a v = 10k 10 100 1k 10k 100k 1m 10m c r o s s t a l k ( d b ) frequency (hz) 0 20 40 60 80 100 120 140 160 v s = 15v c l = 4pf v tx = 1v p-p r l _ transmit = r l _ receive = 10k r l _ transmit = 2k r l _ receive = 10k o u t p u t ( v ) i n p u t ( m v ) time (s) 0 4 8 12 16 20 0 40 80 120 160 200 0 20 40 60 80 100 120 140 160 180 200 v s = 15v a v = 100 v in = 100mv p-p overdrive = 1v r l = 10k output input
isl28108, isl28208, isl28408 19 fn6935.5 march 4, 2014 submit document feedback figure 57. negative output overload response time, v s =15v figure 58. positive output overload response time, v s = 5v figure 59. negative output overload response time, v s = 5v figure 60. overshoot vs capacitive load, v s =15v figure 61. overshoot vs capacitive load, v s = 5v figure 62. large signal 10v step response, v s = 15v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) o u t p u t ( v ) i n p u t ( m v ) time (s) 0 20 40 60 80 100 120 140 160 180 200 v s = 15v a v = 100 v in = 100mv p-p overdrive = 1v r l = 10k -20 -16 -12 -8 -4 0 -200 -160 -120 -80 -40 0 input output o u t p u t ( v ) i n p u t ( m v ) time (s) 0 1 2 3 4 5 6 0 10 20 30 40 50 60 v s = 5v a v = 100 v in = 50mv p-p overdrive = 1v r l = 10k 0 20 40 60 80 100 120 140 160 180 200 output input o u t p u t ( v ) i n p u t ( m v ) time (s) -6 -5 -4 -3 -2 -1 0 -60 -50 -40 -30 -20 -10 0 v s = 5v a v = 100 v in = 50mv p-p overdrive = 1v r l = 10k 0 20 40 60 80 100 120 140 160 180 200 input output o v e r s h o o t ( % ) load capacitance (nf) 0 10 20 30 40 50 60 0.001 0.010 0.100 1 10 100 v s = 15v v out = 100mv p-p a v = 10 a v = 1 a v = -1 o v e r s h o o t ( % ) load capacitance (nf) 0 10 20 30 40 50 60 0.001 0.010 0.100 1 10 100 v s = 5v v out = 100mv p-p a v = 10 a v = 1 a v = -1 -6 -4 -2 0 2 4 6 v o u t ( v ) time (s) 0 100 200 300 400 v s = 15v a v = 1 r l = 2k c l = 4pf
isl28108, isl28208, isl28408 20 fn6935.5 march 4, 2014 submit document feedback figure 63. large signal 4v step response, v s = 5v figure 64. small signal transient response v s = 5v, 15v typical performance curves v s = 15v, v cm = 0v, r l = open, t a = +25c, unless otherwise specified. (continued) 0 v o u t ( v ) time (s) -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 100 200 300 400 v s = 5v a v = 1 r l = 2k c l = 4pf v o u t ( m v ) time (s) -100 -80 -60 -40 -20 0 20 40 60 80 100 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v s = 15v a v = 1 r l = 2k c l = 4pf v s = 5v and
isl28108, isl28208, isl28408 21 fn6935.5 march 4, 2014 submit document feedback applications information functional description the isl28108, isl28208, and isl28408 are single, dual and quad, 1.2mhz, single supply rail-to-rail output amplifiers with a common mode input voltage range extending to a range of 0.5v below the v- rail. their input stages are optimized for precision sensing of ground referenced sign als in low voltage, single supply applications. the input stage has the capability of handling large input differential voltages without phase inversion making them suitable for high voltage compar ator applications. their bipolar design features high open loop gain and excellent dc input and output temperature stability. these op amps feature low quiescent current of 165a, and a maximum temperature drift ranging from 1.1v/c for the isl28208 and isl28408 in the soic package to 1.4v/c for the isl28208 in the tdfn package and the isl28408 in the soic package (see figures 11 through 20). all devices are fabricated in a new precision 40v complementary bipolar di process and immune from latch-up. operating voltage range the devices are designed to operate over the 3v (1.5v) to 40v (20v) range and are fully characterized at 5v and 15v. both dc and ac performance remain vi rtually unchanged over the 5v to 15v operating voltage range. parameter variation with operating voltage is shown in the ?typical performance curves? beginning on page 10. input stage performance the pnp input stage has a common mode input range extending up to 0.5v below ground at +25c (see figures 23 and 24). full amplifier performance is guaranteed down to ground (v-) over the -40c to +125c temperature rang e. for common mode voltages down to -0.5v the amplifiers are fully functional, but performance degrades slightly over the full temperature range. this feature provides excellent cmrr, ac performance and dc accuracy when amplifying low level ground referenced signals. the input stage has a maximum input differential voltage equal to a diode drop greater than th e supply voltage (max 42v) and does not contain the back-to-back input protection diodes found on many similar amplifiers. this feature enables the device to function as a precision comparator by maintaining very high input impedance for high voltage differential input comparator voltages. the high differential input impedance also enables the device to operate reliably in large signal pulse applications without the need for anti-paral lel clamp diodes required on mosfet and most bipolar inpu t stage op amps. thus, input signal distortion caused by nonlinear clamps under high slew rate conditions are avoided. in applications where one or both amplifier input terminals are at risk of exposure to voltages beyond the supply rails, current limiting resistors ma y be needed at each input terminal (see figure 65, r in +, r in -) to limit current through the power supply esd diodes to 20ma. output drive capability the bipolar rail-to-rail output stag e features low saturation levels that enable an output voltage sw ing to less than 10mv when the total output load (including feedback resistance) is held below 50a (figures 31 and 32). with 15v supplies this can be achieved by using feedback resistor values >300k ? . the low input bias and offset currents (-43na and 3na +25c max respectively) minimize dc offset errors at these high resistance values. for example, a balanced 4 resistor gain circuit (figure 65) with 1m ? feedback resistors (r f , r g ) generates a worst case input offset error of only 3mv. furthermore, the low noise current reduces the added noise associated with high feedback resistance. the output stage is internally current limited. output current limit over-temperature is shown in figures 37 and 38. the amplifiers can withstand a short circuit to ei ther rail as long as the power dissipation limits are not exceeded. this applies to only one amplifier at a time fo r the dual op amp. continuous operation under these conditions may degrade long-term reliability. the amplifiers perform well driving capacitive loads (figures 60 and 61). the unity gain, voltage follower (buffer) configuration provides the highes t bandwidth, but is also the most sensitive to ringing produced by load capacitance found in bnc cables. unity gain overshoot is limited to 30% at capacitance values to 0.33nf. at gains of 10 and higher, the device is capable of driving more than 10nf without significant overshoot. output phase reversal output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. these devices are immune to output phase reversal, out to 0.5v beyond the rail (v abs max ) limit (see figure 40). figure 65. input esd di ode current limiting - + r in - r l v in - v+ v- r in + v in + r f r g
isl28108, isl28208, isl28408 22 fn6935.5 march 4, 2014 submit document feedback unused channels if the application requires only one channel, the user must configure any unused channel to prevent it from oscillating. unused channels can oscillate if the input and output pins are floating. this will result in higher-than-expected supply currents and possible noise injection into the channel being used. the proper way to prevent oscillation is to short the output to the inverting input, and ground the positive input (figure 66). power dissipation it is possible to exceed the +150c maximum junction temperatures under certain load and power supply conditions. it is therefore important to ca lculate the maximum junction temperature (t jmax ) for all applications to determine if power supply voltages, load conditions , or package type need to be modified to remain in the safe operating area. these parameters are related using equation 1: where: ?pd maxtotal is the sum of the maximum power dissipation of each amplifier in the package (pd max ) ?pd max for each amplifier can be calculated using equation 2: where: ?t max = maximum ambient temperature ? ja = thermal resistance of the package ?pd max = maximum power dissipation of 1 amplifier ?v s = total supply voltage ?i qmax = maximum quiescent supply current of 1 amplifier ?v outmax = maximum output voltage swing of the application ?r l = load resistance isl28108, isl28208, isl28408 spice model figure 67 shows the spice model schematic and figure 68 shows the net list for the spice model. the model is a simplified version of the actual device and simulates important ac and dc parameters. ac parameters incorporated into the model are: 1/f and flat band noise voltage, slew rate, cmrr, gain and phase. the dc parameters are i os , total supply current and output voltage swing. the model uses typical parameters given in the ?electrical specifications? table beginning on page 6. the avol is adjusted for 122db with the dominant pole at 1hz. the cmrr is set 128db, f = 6khz. the input stage models th e actual device to present an accurate ac representation. the model is configured for ambient temperature of +25c. figures 69 through 83 show the characterization vs simulation results for the noise voltage, open loop gain phase, closed loop gain vs frequency, gain vs frequency vs r l , cmrr, large signal 10v step response, small signal 0.05v step and output voltage swing 15v supplies. license statement the information in this spice model is protected under the united states copyright laws. intersil corporation hereby grants users of this macro-model hereto referred to as ?licensee?, a nonexclusive, nontransferable licence to use this model as long as the licensee abides by the terms of this agreement. before using this macro-model, the licensee should read this license. if the licensee does not accept these terms, permission to use the model is not granted. the licensee may not sell, loan, rent, or license the macro-model, in whole, in part, or in modified form, to anyone outside the licensee?s company. the licensee may modify the macro-model to suit his/her sp ecific applications, and the licensee may make copies of this macro-model for use within their company only. this macro-model is provided ?as is, where is, and with no warranty of any kind either expressed or implied, including, but not limited to, any implied warranties of merchantability and fitness for a particular purpose.? in no event will intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. intersil reserves the right to make changes to the product and the macro-model without prior notice. figure 66. preventing oscilla tions in unused channels - + t jmax t max ja xpd maxtotal + = (eq. 1) pd max v s i qmax v s ( - v outmax ) v outmax r l ---------------------------- + = (eq. 2)
isl28108, isl28208, isl28408 23 fn6935.5 march 4, 2014 submit document feedback common mode gain stage with zero correction current sources output stage input stage 1st gain stage mid supply ref v 2nd gain stage vc vmid vmid vmid 13 26 v- 2 15 20 v++ v-- 19 27 v++ vout 5 14 23 vmid v-- v++ v-- 6 17 v+ vg 16 11 vin+ 8 v-- 10 7 9 22 21 24 18 vc 25 1 28 v++ 12 vin- 0 0 0 0 + - g1 gain = 0.477 - + + - eos e gain = 1 eos e + - g15 gain = 314.15e-6 cindif 1.21e-12 q8 pnp_lateral q8 + - g8 gain = 0.6 c6 10e-12 r11 1e-3 ios 3e-9 r5 1 1 dx d11 r13 3.183e3 r13 c2 2.31e-11 d1 dbreak d1 dbreak r7 7.62e9 dx d3 v2 -6.76 - + + - e4 gain = 0.5 + - g7 gain = 0.6 gain = 0.6 + - g5 gain = 0.6 i2 6e-6 c3 10e-12 c3 10e-12 v4 -6.76 dx d8 + - g16 gain = 314.15e-6 dy d12 + - g13 gain = 12.5e-3 r19 3.183e3 q9 pnp_lateral q9 pnp_lateral + - g11 gain = 12.5e-3 + - g2 gain = 0.477 + - g3 gain = 261.74e-6 r4 6250 dx d10 dn d14 r15 80 r8 7.62e9 l1 1.59e-08 c5 10e-12 c5 10e-12 v5 -0.4 v5 -0.4 r9 1e-3 dn d13 v3 -6.74 - + + - e3 gain = 1 + - g9 gain = 314.15e-6 l3 1.59e-08 r3 6250 v6 -0.4 v6 cin2 4.19e-12 dx d4 + - g12 gain = 12.5e-3 q7 pnp_input q7 i3 6e-6 + - g6 gain = 0.6 dx r1 5e11 r14 3.183e3 r12 1e-3 c4 10e-12 c4 10e-12 dx d7 - + + - gain = 0.3 dy d9 q6 pnp_input r10 1e-3 - + + - e2 gain = 1 e2 + - g4 gain = 261.74e-6 1150 i1 12e-6 + - g14 gain = 12.5e-3 l4 1.59e-08 dx d5 d2 dbreak d2 dbreak r6 1 l2 1.59e-08 isy 185e-6 isy r16 80 v1 -6.74 r20 3.183e3 + - g10 gain = 314.15e-6 c1 2.31e-11 r2 v7 0.1 0.1 cin1 4.19e-12 figure 67. spice model schematic
isl28108, isl28208, isl28408 24 fn6935.5 march 4, 2014 submit document feedback *isl28108_208 macromodel - covers following *products *isl28108 *isl28208 *isl28408 * *revision history: * revision b, lafontaine january 22 2014 * model for noise, supply currents, cmrr *128db f=6khz ,avol 122db f=1hz * sr = 0.45v/us, gbwp 1.2mhz. *copyright 2011 by intersil corporation *refer to data sheet "license statement" *use of this model indicates your acceptance *with the terms and provisions in the license *statement. * *intended use: *this pspice macromodel is intended to give *typical dc and ac performance characteristics *under a wide range of external circuit *configurations using compatible simulation *platforms ? such as isim pe. * *device performance features supported by this *model *typical, room temp., nominal power supply *voltages used to produce the following *characteristics: *open and closed loop i/o impedances, *open loop gain and phase, *closed loop bandwidth and frequency *response, *loading effects on closed loop frequency *response, *input noise terms including 1/f effects, *slew rate, *input and output headroom limits to i/o *voltage swing, *supply current at nominal specified supply *voltages. * *device performance features not supported *by this model: *harmonic distortion effects, *output current limiting (current will limit at *40ma), *disable operation (if any), *thermal effects and/or over temperature *parameter variation, *limited performance variation vs. supply *voltage is modeled, *part to part performance variation due to *normal process parameter spread, *any performance difference arising from *different packaging source, *load current reflected into the power supply *current. * * connections: +input * | -input * | | +vsupply * | | | -vsupply * | | | | output * | | | | .subckt isl28108_208 vin+ vin-v+ v- vout * source isl28118_218_subckt_check_0 * *voltage noise e_en vin+ 6 2 0 0.3 d_d13 1 2 dn d_d14 1 2 dn v_v7 1 0 0.1 r_r17 2 0 1150 * *input stage q_q6 11 10 9 pnp_input q_q7 8 7 9 pnp_input q_q8 v-- vin- 7 pnp_lateral q_q9 v-- 12 10 pnp_lateral i_i1 v++ 9 dc 12e-6 i_i2 v++ 7 dc 6e-6 i_i3 v++ 10 dc 6e-6 i_ios 6 vin- dc 3e-9 d_d1 7 10 dbreak d_d2 10 7 dbreak r_r1 5 6 5e11 r_r2 vin- 5 5e11 r_r3 v-- 8 6250 r_r4 v-- 11 6250 c_cin1 v-- vin- 4.19e-12 c_cin2 v-- 6 4.19e-12 c_cindif 6 vin- 1.21e-12 * *1st gain stage g_g1 v++ 14 8 11 0.4779867 g_g2 v-- 14 8 11 0.4779867 v_v1 13 14 -6.74 v_v2 14 15 -6.76 d_d3 13 v++ dx d_d4 v-- 15 dx r_r5 14 v++ 1 r_r6 v-- 14 1 * *2nd gain stage g_g3 v++ vg 14 vmid 261.748e-6 g_g4 v-- vg 14 vmid 261.748e-6 v_v3 16 vg -6.74 v_v4 vg 17 -6.76 d_d5 16 v++ dx d_d6 v-- 17 dx r_r7 vg v++ 7.62283e9 r_r8 v-- vg 7.62283e9 c_c1 vg v++ 2.31e-11 c_c2 v-- vg 2.31e-11 * *mid supply ref e_e2 v++ 0 v+ 0 1 e_e3 v-- 0 v- 0 1 e_e4 vmid v-- v++ v-- 0.5 i_isy v+ v- dc 185e-6 * *common mode gain stage with zero g_g5 v++ 19 5 vmid 0.6 g_g6 v-- 19 5 vmid 0.6 g_g7 v++ vc 19 vmid 0.6 g_g8 v-- vc 19 vmid 0.6 e_eos 12 6 vc vmid 1 l_l1 18 v++ 1.59159e-08 l_l2 20 v-- 1.59159e-08 l_l3 21 v++ 1.59159e-08 l_l4 22 v-- 1.59159e-08 r_r9 19 18 1e-3 r_r10 20 19 1e-3 r_r11 vc 21 1e-3 r_r12 22 vc 1e-3 * *pole stage g_g15 v++ 28 vg vmid 314.15e-6 g_g16 v-- 28 vg vmid 314.15e-6 r_r19 28 v++ 3.18319e3 r_r20 v-- 28 3.18319e3 c_c5 28 v++ 10e-12 c_c6 v-- 28 10e-12 * g_g9 v++ 23 28 vmid 314.15e-6 g_g10 v-- 23 28 vmid 314.15e-6 r_r13 23 v++ 3.18319e3 r_r14 v-- 23 3.18319e3 c_c3 23 v++ 10e-12 c_c4 v-- 23 10e-12 * *output stage with correction current sources g_g11 26 v-- vout 23 12.5e-3 g_g12 27 v-- 23 vout 12.5e-3 g_g13 vout v++ v++ 23 12.5e-3 g_g14 v-- vout 23 v-- 12.5e-3 d_d7 23 24 dx d_d8 25 23 dx d_d9 v-- 26 dy d_d10 v++ 26 dx d_d11 v++ 27 dx d_d12 v-- 27 dy v_v5 24 vout -0.4 v_v6 vout 25 -0.4 r_r15 vout v++ 80 r_r16 v-- vout 80 .model pnp_lateral pnp(is=1e-016 bf=250 va=80 + ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1) .model pnp_input pnp(is=1e-016 bf=100 va=80 + ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1) .model dbreak d(bv=43 rs=1) .model dn d(kf=6.69e-9 af=1) .model dx d(is=1e-12 rs=0.1) .model dy d(is=1e-15 bv=50 rs=1) .ends isl28108_208 figure 68. spice net list
isl28108, isl28208, isl28408 25 fn6935.5 march 4, 2014 submit document feedback characterization vs simulation results figure 69. characterized input noise voltage figure 70. simulated input noise voltage figure 71. characterized open-loop gain, phase vs frequency figure 72. simulated open-loop gain, phase vs frequency figure 73. characterized closed loop gain vs frequenc y figure 74. simulated closed loop gain vs frequency 10 100 0.1 1 10 100 1k 10k 100k i n p u t n o i s e v o l t a g e ( n v / h z ) frequency (hz) 100 0.1 1 10 100 1k 10k 100k i n p u t n o i s e v o l t a g e ( n v / h z ) frequency (hz) 10 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 200 1 10 100 1k 10k 100k 1m 10m 100m 1g g a i n ( d b ) , p h a s e ( ) frequency (hz) 0.1 v s = 15v r l = 1m ? simulation gain phase -100 -50 0 50 100 150 200 1 10 100 1k 10k 100k 1m 10m 100m 1g g a i n ( d b ) , p h a s e ( ) frequency (hz) 0.1 v s = 15v r l = 1m ? simulation phase gain -10 0 10 20 30 40 50 60 70 1k 10k 100k 1m 10m g a i n ( d b ) frequency (hz) 100 a cl = 1 a cl = 10 a cl = 1001 v s = 5v, 15v c l = 4pf v out = 100mv p-p r l = 2k a cl = 101 r f = 0, r g = r f = 10k ? , r g = 10 ? r f = 10k ? , r g = 100 ? r f = 10k ? , r g = 1.1k ? -10 0 10 20 30 40 50 60 70 1k 10k 100k 1m 10m g a i n ( d b ) frequency (hz) 100 v s = 5v, 15v c l = 4pf v out = 100mv p-p r l = 2k r f = 0, r g = r f = 10k ? , r g = 1.1k ? r f = 10k ? , r g = 100 ? r f = 10k ? , r g = 10 ?
isl28108, isl28208, isl28408 26 fn6935.5 march 4, 2014 submit document feedback figure 75. characterized gain vs frequency vs r l figure 76. simulated gain vs frequency vs r l figure 77. characterized cm rr vs frequency figure 78. si mulated cmrr vs frequency figure 79. characterized large signal 10v step response figure 80. simulated large signal 10v step response characterization vs simulation results (continued) frequency (hz) normalized gain (db) 100k 1m 10m 10k 1k -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 r l = 100 r l = 49.9 r l = 499 v s = 15v a v = +1 v out = 100mv p-p c l = 4pf 100 r l = open, 100k, 10k r l = 1k frequency (hz) normalized gain (db) 100k 1m 10m 10k 1k -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 v s = 15v a v = +1 v out = 100mv p-p c l = 4pf 100 r l = 100 r l = 49.9 r l = 499 r l = open, 100k, 10k r l = 1k c m r r ( d b ) frequency (hz) 1m 1 10 100 1k 10k 100k 1m 10m 100m 1g 0.1 0.01 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 v s = 15v simulation 0 50 100 150 c m r r ( d b ) frequency (hz) 1m 1 10 100 1k 10k 100k 1m 10m 100m 1g 0.1 0.01 v s = 15v simulation -6 -4 -2 0 2 4 6 v o u t ( v ) time (s) 0 100 200 300 400 v s = 15v a v = 1 r l = 2k c l = 4pf -6 -4 -2 0 2 4 6 v o u t ( v ) time (s) 0 100 200 300 400 v s = 15v a v = 1 r l = 2k c l = 4pf
isl28108, isl28208, isl28408 27 fn6935.5 march 4, 2014 submit document feedback figure 81. characterized sma ll signal transient response figure 82. simulated small signal transient response figure 83. simulated output voltage swing characterization vs simulation results (continued) v o u t ( m v ) time (s) -100 -80 -60 -40 -20 0 20 40 60 80 100 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v s = 15v a v = 1 r l = 2k c l = 4pf v s = 5v and v o u t ( m v ) time (s) -100 -80 -60 -40 -20 0 20 40 60 80 100 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v s = 15v a v = 1 r l = 2k c l = 4pf v s = 5v and 0 0.5 1.0 1.5 2.0 -20 -10 0 10 20 o u t p u t v o l t a g e s w i n g ( v ) time (m s) voh = 14.93v vol = -14.94v
isl28108, isl28208, isl28408 28 fn6935.5 march 4, 2014 submit document feedback revision history the revision history provided is for informational purposes only and is believed to be accurate, but not warranted. please go t o web to make sure you have the latest rev. date revision change march 4, 2014 fn6935.5 updated absolute maximum ratings table on page 6, by adding isl28108 msop value to esd tolerance. updated spice model netlisl on page 24. january 22, 2013 fn6935.4 ? added isl28208 msop specifications. moved table of contents to page 2. removed ?coming soon? from isl28208fuz entry in ?ordering information? table on page 3. page 6, removed package indicators on vos entries for isl28208 and isl28408; added isl28208 msop entries for tcvos and deltavos. page 7, removed package indicators on ios entries for isl28208 and isl28408. page 8, removed package indicators on vos and ios entries for isl28208 and isl28408; added isl28208 msop entries for tcvos, and added ?isl28108, isl28208? to 4th and 5th rows of cmrr parameter. page 8, added isl28208 msop entries for psrr. page 10, added ?+25c? to ?default? info at top of page. page 12, added ?msop? to titles of figures 15 and 16. october 19, 2011 fn6935.3 ? on page 6, 15v electrical sp ecifications table, added the following parameters: - vos isl28108 soic, tdfn - tcvos isl28108 soic, tdfn - ios isl28108 soic, tdfn ? on page 6 and 6, 15v electrical specifications ta ble, changed the following in conditions column: - vos: changed ?isl28208 soic, tdfn? to ?isl28208 soic, tdfn; isl28408 soic? - tcvos: changed ?isl28208 tdfn? to?isl28208 tdfn, isl28408 soic? - ios: changed ?isl28108 soic, tdfn? to ?isl28108 soic, tdfn; isl28408 soic? ? on page 8, 5v electrical specifications table, added the following: - vos isl28108 soic, tdfn - tcvos isl28108 soic, tdfn - ios isl28108 soic, tdfn ? on page 8, 5v electrical specifications table, changed the following in conditions column: - vos: changed ?isl28208 soic, tdfn? to ?isl28208 soic, tdfn; isl28408 soic? - tcvos: changed ?isl28208 tdfn? to?isl28208 tdfn, isl28408 soic? - ios: changed ?isl28108 soic, tdfn? to ?isl28108 soic, tdfn; isl28408 soic? ? on page 10 through page 12, added the following to typical performance curves: - figures 3, 4: isl28408 soic input offset distribution voltage, 15v and 5v - figures 7, 8: isl28108 soic 15v vos distribution, and 5v vos distribution - figures 9, 10: isl28108 tdfn 15v vo s distribution, and 5v vos distribution - figures 11, 12: isl28408 soic tcvos vs. number of amplifiers 15v and 5v - figures 17, 18: isl28108 soic 15v tcvos distribution, and 5v tcvos distribution - figures 19, 20: isl28108 tdfn 15v tcvos distribution, and 5v tcvos distribution ? on page 21, applications: minor edit s to re-align figures with curves ? on page 22: changed heading from ?using only one am plifier to ?unused channels? and edited for clarity. ? on page 32: changed package outline drawing l8.3x3a to l8.3x3k ? on page 33: changed package outline drawing m8.118 to m8.118b ? on page 34: added package outline drawing m14.15 ? on page 1, features: changed low input offset voltage from 230v to (isl28108)??150v. added related literature section with an1658, "isl28208s oiceval2z evaluation board user guide". ? on page 3, ordering information: added isl28208soi ceval2z evaluation board. removed "coming soon" from isl28408fbz. corrected package dwg. # for tdfn package from l8.3x3a to l8.3x3k. corrected package dwg. # for msop package from m8.118 to m8.118b. ? on page 6, absolute maximum ratings, changed ?esd tolerance (isl28208)? to ?esd tolerance (isl28208, isl28408)?. added esd information for isl28108 as follows: esd tolerance (isl28108) human body model (tested per jesd22-a114f).....5.5kv machine model (tested per jesd22-a115-c).....300v charged device model (tested per jesd22-c110d).....2kv
isl28108, isl28208, isl28408 29 fn6935.5 march 4, 2014 submit document feedback october 19, 2011 fn6935.3 ? on page 6, thermal information, changed package temperatures from : 8 ld soic package (108, 208, notes 4, 7), ja = 120, jc = 55 8 ld tdfn package (108, 208, notes 5, 6), ja = 47, jc = 6 8 ld msop package (108, 208, notes 4, 7), ja = 150, jc = 45 14 ld soic package (408, notes 4, 7), ja = -, ja = - to: 8 ld soic package (208, notes 4, 7), ja = 120, jc = 55 and 8 ld soic package (108, notes 4, 7), ja = 120, jc = 60 8 ld tdfn package (208, notes 5, 6), ja = 47, jc = 6 and 8 ld tdfn package (108, notes 5, 6), ja = 45, jc = 3.5 8 ld msop package (208, notes 4, 7), ja = 150, jc = 50 and 8 ld msop package (108, notes 4, 7), ja = 165, jc = 57 14 ld soic package (408, notes 4, 7), ja = 71, jc = 37 ? april 20, 2011 fn6935.2 ? added discussion of isl28408 throughout datasheet. ? on page 3 in ?ordering information?: added new part, ?isl28408fbz?. corrected part marking for isl28208frtz from 208z to 208f. added ?isl28408? to note 3. under? pin configurations,? added isl28408 (14 ld soic) pin configuration diagram. ? on page 5: in pin descriptions table, added colu mn for isl28408 14ld soic. corrected schematic for circuit 2. ? on page 6: under ?thermal information? added "14 ld soic package (408, notes 4, 7)" and added isl28108 to 8 ld tdfn and 8 ld msop. changed ja and jc for 8 ld tdfn package from 48 and 5.5 to 47 and 6. added note 6 regarding jc ?case temp? measurement, and appl ied it to 8 ld tdfn package. ? on page 6: in electrical specifications table, changed typ spec for tci b from 70 pa/ c to 0.07na/ c. on page 8, changed typ spec for tci b from -67 pa/ c to -0.067na/ c. these are not spec changes since the values are the same. ? on page 14, figs. 31 and 32: changed y axis units label from (mv) to (v); changed x axis units label from (a) to (ma). ? on page 21, under ?output drive capability,? para 2, changed "the output stage can swing at moderate levels of output current (figures 21 and 22) and the output stage is internally current limited. output current limit over-termperature..." to "the output stag e is internally current limited. output current limit over-temperature..." march 11, 2011 fn6935.1 ? on page 1, in the first paragraph - adde d the following after v-rail: "a rail-to-rail differential input voltage range for use as a comparator,?" ?on page1 in ?features: - added bullet - ?rail-to-rail input differential voltage range for comparator applications? - changed low noise current from "100fa/sq.root hz" to "80fa/sq.root hz" ? on page 3 in ?ordering information? - removed "c oming soon" from isl28208frtz part since it is releasing. ? on page 6, changed ?esd tolerance (isl28208, isl28408)? as follows: - human body model changed from "3kv" to "6kv" - machine model changed from "300v" to "400v" - added jedec test information for all esd ratings ? on page 6 and page 8, added test conditions for soic tcvos specs. added tcvos specs for tdfn. ? on page 7 changed ?noise current density? typical from "100" to "80" ? on page 21, updated applications information functional description ? on page 21 updated input stage performance section ? on page 21 updated output drive capability section ? on page 22 added isl28108 and isl28208 sp ice model and license agreement section ? on page 23 added spice net list ? on page 25 added characterization vs simulation results curves february 16, 2011 fn6935.0 initial release revision history the revision history provided is for informational purposes only and is believed to be accurate, but not warranted. please go t o web to make sure you have the latest rev. date revision change
isl28108, isl28208, isl28408 30 intersil products are manufactured, assembled and tested utilizing iso9001 quality systems as noted in the quality certifications found at www.intersil.com/en/suppor t/qualandreliability.html intersil products are sold by description only. intersil corporat ion reserves the right to make changes in circuit design, soft ware and/or specifications at any time without notice. accordingly, the reader is cautioned to verify that data sheets are current before placing orders. information furnished by intersil is believed to be accurate and reliable. however, no responsi bility is assumed by intersil or its subsid iaries for its use; nor for any infringem ents of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of i ntersil or its subsidiaries. for information regarding intersil corporation and its products, see www.intersil.com fn6935.5 march 4, 2014 for additional products, see www.intersil.com/en/products.html submit document feedback about intersil intersil corporation is a leading provider of innovative power ma nagement and precision analog so lutions. the company's product s address some of the largest markets within the industrial and infrastr ucture, mobile computing and high-end consumer markets. for the most updated datasheet, application notes, related documentatio n and related parts, please see the respective product information page found at www.intersil.com . you may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask . reliability reports are also av ailable from our website at www.intersil.com/support
isl28108, isl28208, isl28408 31 fn6935.5 march 4, 2014 submit document feedback package outline drawing , m8.15e m8.15e 8 lead narrow body small outline plastic package rev 0, 08/09 unless otherwise specified, tolerance : decimal 0.05 the pin #1 identifier may be either a mold or mark feature. interlead flash or protrusions shall not exceed 0.25mm per side. dimension does not include interlead flash or protrusions. dimensions in ( ) for reference only. dimensioning and tolerancing conform to amse y14.5m-1994. 3. 5. 4. 2. dimensions are in millimeters. 1. notes: detail "a" side view ?a typical recommended land pattern top view a b 4 4 0.25 a mc b c 0.10 c 5 id mark pin no.1 (0.35) x 45 seating plane gauge plane 0.25 (5.40) (1.50) 4.90 0.10 3.90 0.10 1.27 0.43 0.076 0.63 0.23 4 4 detail "a" 0.22 0.03 0.175 0.075 1.45 0.1 1.75 max (1.27) (0.60) 6.0 0.20 reference to jedec ms-012. 6. side view ?b?
isl28108, isl28208, isl28408 32 fn6935.5 march 4, 2014 submit document feedback package outline drawing , l8.3x3k l8.3x3k 8 lead thin dual flat no-lead plastic package rev 1, 9/11 bottom view detail "x" side view typical recommended land pattern top view c 0 . 203 ref 0 . 05 max. 0 . 02 nom. 5 3.00 a b 3.00 (4x) 0.15 6 pin 1 index area pin #1 6x 0.65 1.50 0.10 8 1 0.40 0.05 6 0.75 0.05 see detail "x" 0.08 0.10 c c c ( 2.90 ) (1.50) ( 8 x 0.25) ( 8x 0.50) ( 1.95) 2.30 0.10 0.10 8x 0.25 0.05 a mc b 4 2x 1.95 (6x 0.65) index area pin 1 located within the zone indicate d. the pin #1 identifier may be unless otherwise specified, to lerance : decimal 0.05 tiebar shown (if present) is a non-functional feature. the configuration of the pin #1 id entifier is optional, but must be between 0.15mm and 0.20mm from the terminal tip. dimension applies to the metalliz ed terminal and is measured dimensions in ( ) for reference only. dimensioning and tole rancing conform to amse y14.5m-1994. 6. either a mold or mark feature. 3. 5. 4. 2. dimensions are in millimeters. 1. notes: compliant to jedec mo-229 weec-2 except for the foot length. 7. ( 2.30)
isl28108, isl28208, isl28408 33 fn6935.5 march 4, 2014 submit document feedback package outline drawing , m8.118b m8.118b 8 lead mini small outline plastic package rev 1, 3/12 detail "x" side view 2 typical recommended land pattern top view pin# 1 id 0.23 - 0.36mm detail "x" 0.10 0.05mm (4.40) (3.00) (5.80) h c 1.10 max 33 gauge plane 0.25 0.95 ref 0.53 0.10mm b 3.00.10mm 12 8 0.860.05mm seating plane a 0.65mm bsc 3.00.10mm (0.40) (1.40) (0.65) d 5 5 0.150.05mm side view 1 0.08 c a-b d m 0.10 c dimensioning and tolerancing conform to jedec mo-187-aa plastic interlead protrusions of 0.15mm max per side are not dimensions in ( ) are for reference only. dimensions are measured at datum plane "h". plastic or metal protrusions of 0.15mm max per side are not dimensions are in millimeters. 3. 4. 5. 6. notes: 1. 2. and amsey14.5m-1994. included. included. 4.90.20mm
isl28108, isl28208, isl28408 34 fn6935.5 march 4, 2014 submit document feedback package outline drawing , m14.15 m14.15 14 lead narrow body small outline plastic package rev 1, 10/09 a d 4 0.25 a-b mc c 0.10 c 5 b d 3 0.10 a-b c 4 0.20 c 2x 2x 0.10 d c 2x h 0.10 c 6 3 6 id mark pin no.1 (0.35) x 45 seating plane gauge plane 0.25 (5.40) (1.50) 1.27 0.31-0.51 4 4 detail"a" 0.220.03 0.10-0.25 1.25 min 1.75 max (1.27) (0.6) 6.0 8.65 3.9 7 14 8 dimensioning and tolerancing conform to amsey14.5m-1994. dimension does not include interlead flash or protrusions. dimensions in ( ) for reference only. interlead flash or protrusions sh all not exceed 0.25mm per side. datums a and b to be determined at datum h. 4. 5. 3. 2. dimensions are in millimeters. notes: 1. the pin #1 indentifier may be either a mold or mark feature. 6. does not include dambar protrusion. allowable dambar protrusion 7. reference to jedec ms-012-ab. shall be 0.10mm total in excess of lead width at maximum condition. detail "a" side view typical recommended land pattern top view


▲Up To Search▲   

 
Price & Availability of COMINGSOON

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X